

Developing and Appraising a Toolbox of Numerical Models to Quantify Global Blockage Effects

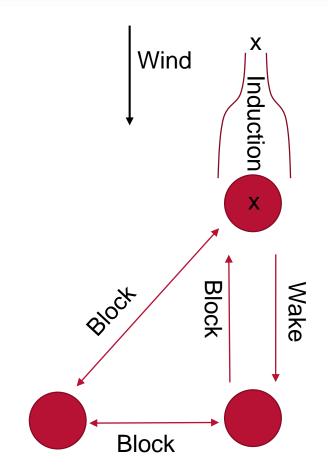
Dr Graham Hawkes – Engineering Manager (Energy Technology) Frazer-Nash Consultancy Ltd

WindEurope 2020

2

- Objective
 - To explore the need and potential for developing a toolbox of methods to quantify blockage effects

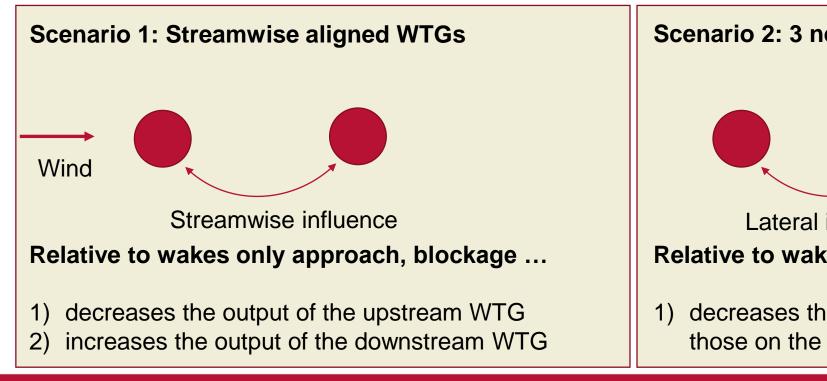
Contents

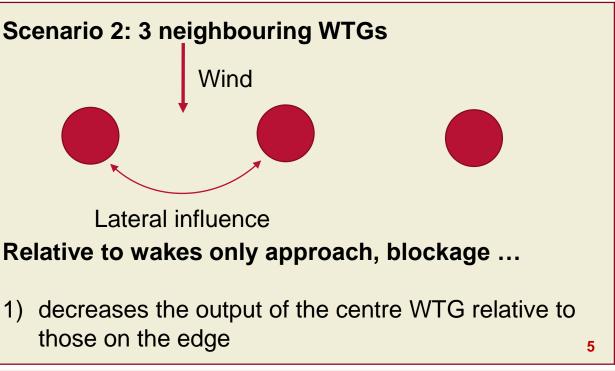

- Refresher on blockage
- Why develop a toolbox?
- A need for coupling
- A candidate model ensemble and initial observations
- Coupling test case and results
- Summary and forward outlook

- Co-author Acknowledgements
 - Brian Gribben Frazer-Nash
 - Eliott Lindsay Frazer-Nash
 - Roy Brown Frazer-Nash
 - Niels Troldborg DTU
 - Alex Meyer Forsting DTU
- Support
 - We recognise the support and permission of the Carbon Trust and OWA programme partners to publish this work

Refresher on Blockage

- Basic induction effect of a single turbine
 - Theory describes existence of upstream influence (but not extent or magnitude)
 - Tacitly ignored in power performance assessments
- Conventional wake loss assessment
 - Windward WTGs see the freestream, form wakes which impact other WTGs
 - Convenient streamwise workflow Not a bad approximation
- In an array upstream influences start to interact
 - Change inflow, power production and wake behaviour
 - Complex coupled wake-blockage system (elliptic)
- Physics or Accountancy?
 - Most noticeable on windward power asymmetry/deficit and upstream deceleration
 - But is it a "loss", a "power correction" or a "redistribution of production"?


4


- Usage of wake loss model ensembles is common
 - Confidence weighted ensembles help us to manage model uncertainty
 - Engineering models: N.O. Jensen, Ainslie, Larsen etc
 - Higher fidelity models: Fuga, CFD
 - Both types of model have their place in wake loss assessment
- Engineering models
 - Industry wants these! Run quickly and afford optimisation
 - Requires few inputs and avoids need for data we often do not know
- Higher fidelity models
 - Fundamental approach with fewer assumptions potential for extrapolation
 - Offer physical insight in addition to raw answers
 - Are computationally intensive and precision places demands on quality of inputs/assumptions

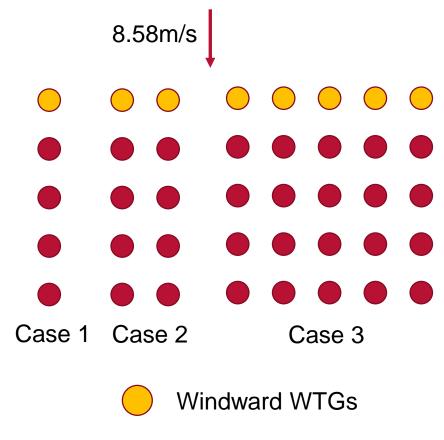
- > Do we separate blockage and wakes or predict the total interaction in a single model?
 - Blockage interactions in an array are complex. A viable tool needs to appraise 2 basic scenarios
 - Inherent wakes-blockage interaction suggests a coupled approach to predict interaction
 - Physically correct, safest (yield accountancy) and could be integrated alongside existing wake models

Our Candidate Model Ensemble

Model	Images	Comments
Inviscid Runs <1min		 Vortex/potential representations of WTGs, coupled to conventional wake models Blockage outside of wake zones, ground constraint modelled using method of images Sensitive to: WTG parameters, layout, wind direction and speed Insensitive to: viscous effects, turbulence, ABL properties, coriolis, gravity waves
Combined Shallow Layer Runs <1min	Centrum of Wind Steed (Int)	 Based on the separate work of Smith and Hunt. Single layer with farm as a drag patch Potential to couple to wake model via bespoke drag distribution Sensitive to: WTG parameters, layout bounds, wind direction and speed, thermal ABL properties, coriolis, gravity waves Insensitive to: Detailed layout, ABL velocity profile
CFD Runs > 1hr		 Solution of RANS closed Navier-Stokes equations Elliptic nature of equations provides upstream influence as required Sensitive to: Has all the physics necessary to address blockage within RANS closure limits Challenges: Sensitivity to AD implementation, WTG mesh, ABL definition/preservation

Our Candidate Model Ensemble: Initial Observations of Performance

Model	Images
Inviscid Runs <1min	
Combined Shallow Layer Runs <1min	Contrain of Wied Speed (with)
CFD Runs > 1hr	

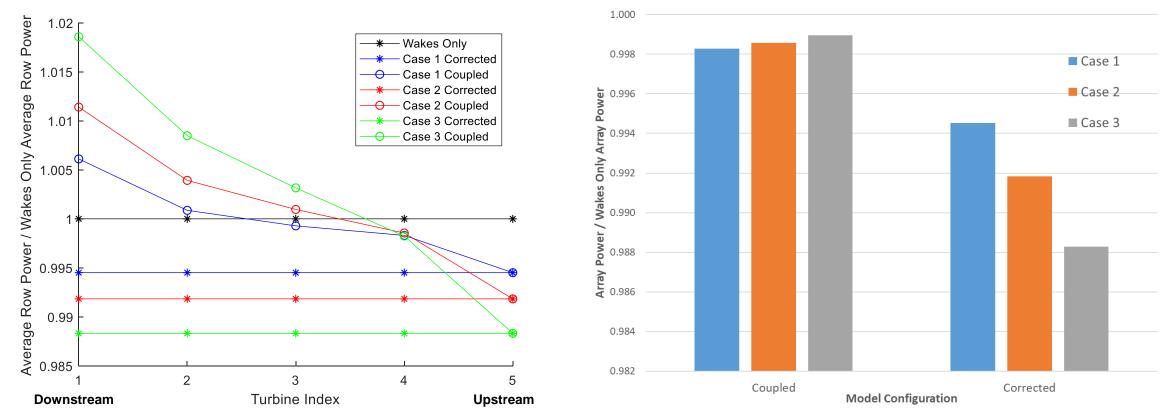

- Magnitude and shape
 - > All models return "few percent" power reduction on lead row
 - General U-shape power trends as expected
- Symmetry
 - Analytical forms in Inviscid/CSL return symmetric U-shapes
 - Some asymmetry in CFD: residual ABL development, Mesh variation noise, Actuator disk assumption
- Parametric variation
 - Inviscid models invariant with lapse rate gives lowest blockage
 - CSL/CFD show lower lead row power with increasing lapse rate/reducing BL height (consistent with Wu & Porté-Agel [2017])
 - Outlook
 - Looks promising, but formal validation required

7

- Consider 1, 2 and 5 columns of turbines, each 5 rows deep
- Using Coupled Inviscid-Wake model
 - Quick, can turn on/off both wakes and blockage independently
 - Mirror turbines for blockage and wake (ground constraint)
 - Probably lower bound blockage estimate
- Do 3 sets of calculations for each site
 - 1. Wakes Only calculations N.O Jensen model ("today's practice")
 - 2. Coupled inviscid-wakes calculations
 - 3. **Corrected** Wakes only multiplied by lead row power correction from coupled model

Small hypothetical offshore wind farms

Outputs


Power variation on through rows and total farm output

Example Coupling Test Case: Results

9

- Data show power reduction at lead row but coupled model suggests this is partially compensated for by power uplift at later rows
 - Why ... blockage-induced acceleration field outside of wake, unwinding of blockage through array

Summary and Forward Outlook

- The nature of blockage
 - We see blockage in data and mass/momentum conserving analytical codes
 - Is it always a loss? Perhaps, although there is evidence that blockage also redistributes power offtake
- Blockage accountancy
 - Accountancy by a lead row correction may be possible, but it doesn't represent the physics of blockage
 - We believe blockage should be handled in a coupled model to predict turbine interaction losses
 - This might need some retuning of historical wake loss models (correction requires blockage to be "baked in")
- Blockage models
 - We've introduced the basic capabilities of a family of models that could couple blockage/wakes
 - Development/validation is needed but currently they suggest that power redistribution could be important
- But there is still more to do! Work continues on:
 - CFD good practice, rapid model development/enhancement and validation against real wind farm data 10